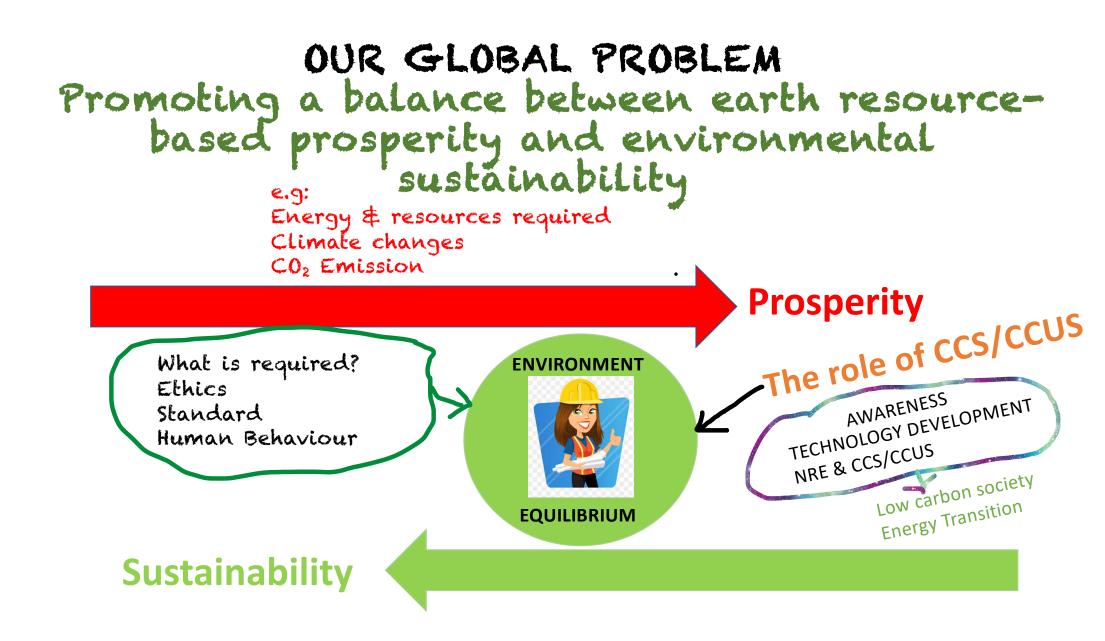

Utilizing CCS/CCUS technology to achieve Net Zeso Emission (NZE)

By: Prof (Em ITB) Djoko Santoso

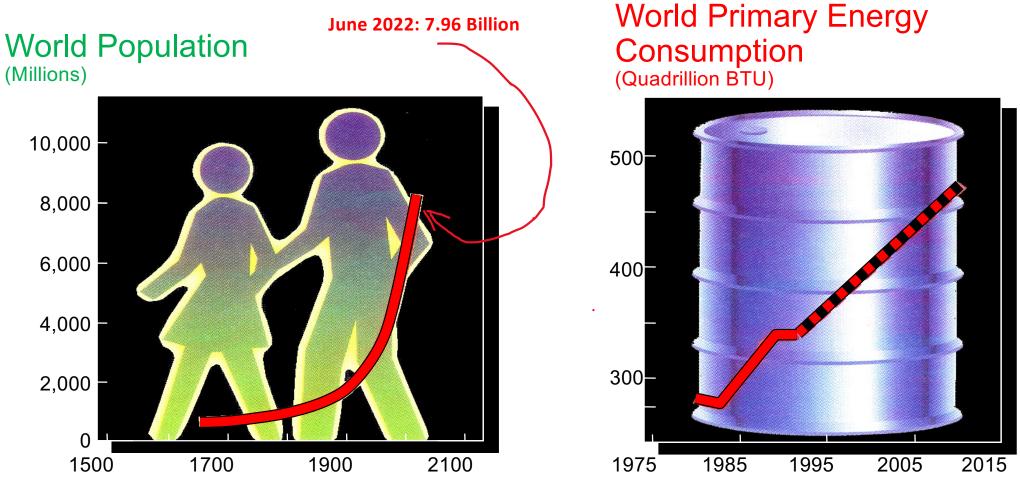

Faculty of Mining and Petroleum Engineering, Institute of Technology Bandung 17 January 2023

Contents

- Introduction
 - Survivability and sustainability issues (earth's energy resources vs earth's environmental sustainability)
- Efforts to reduce CO2
- Utilization of CCS/CCUS
 - Main energy production vs carbon emissions
 - Utilization of CCS/CCUS technology towards NZE
- Closing

• Introduction

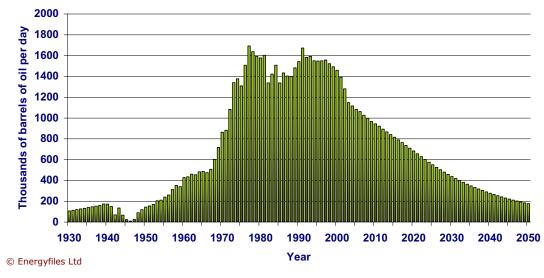
Indonesia toward Net Zero Emission (Source of data: IEA, 2023)

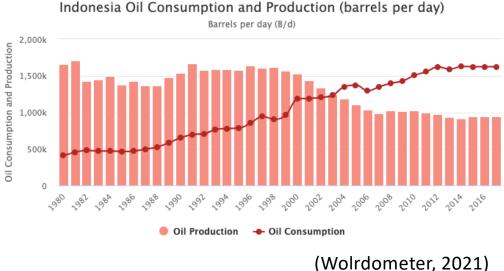

- Indonesia Development (2023):
 - GDP: 10 X year of indepence (1945)
 - Poverty: 60%(1970) → 10%
 - 4th Populous country.
 - 7th largest economy
 - 12th largest energy consumer.
 - Largest coal exporter.
 - Net oil exporter 2003.
 - Oil & Gas Share to GDP: 10%(2000) → 2.5%(2021)
 - Revenue (Oil & Gas): decrease fourfold
 - Export (coal & natural gas): 20% of net export.
 - Total energy supply: increase 60% (2000-2021).
 - Energy sector emission: 600 (Mt CO₂) (2021)(2X(2000)
 - 9th largest emitter of CO2:

- Indonesia Development (2023) → CO₂ Emission:
 - Indonesia still highly dependent on fossil fuels.
 - Energy sector emission: 600 (Mt CO₂) (2021)(2X(2000))
 - 9th largest emitter of CO2
 - Per capita energy CO2: 2 tonnes. (half of global average)
- Challenge to Indonesia Net Zero Emission 2060:
 - Indonesia still highly dependent on fossil fuels.
 - Energy sector emission: 600 (Mt CO₂) (2021)(2X(2000)
 - 9th largest emitter of CO2:
 - GDP/capita 30% < 30% avg world..
 - Economic regional imbalance: Java & Bali contribute 75% GDP.
 - Economically: Highly resources dependent.

- Transformation toward advanced economy 2045:
 - Economic Diversification.
 - Economic driven by knowledge, technology and innovation.
 - Clean energy development:
 - Energy transition (included Geothermal)
 - Fossil Fuel low carbon Technology (Clean coal technology, CCS/CCUS, co-firing biomass, diversification down stream coal industry)

(PPSDMA-ESDM, 2023)

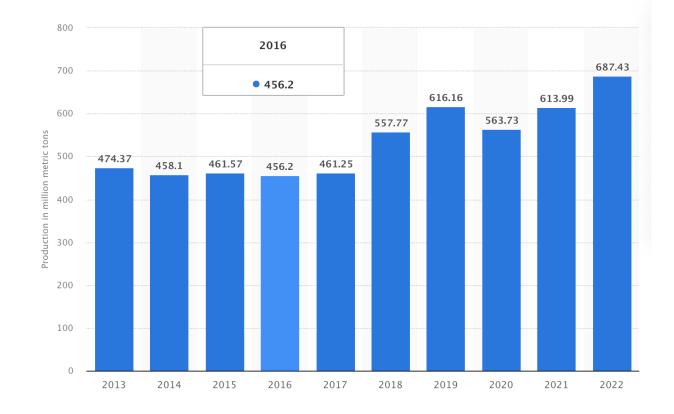

Energy demand increase by increasing world population



AAPG Explorer, 8/95

Resource Scarcity History of Indonesia from oil exporting country to importing country

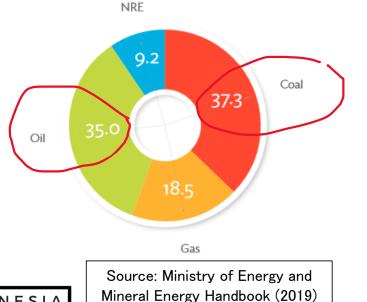
INDONESIA: Oil production forecast to 2050

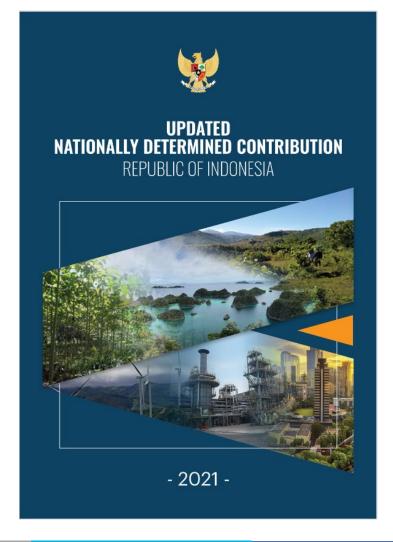


There is some space in the reservoir that could be utilized

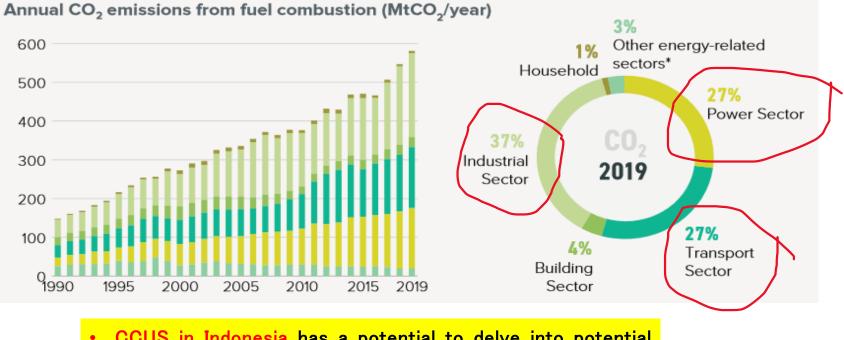
Resource Scarcity

Coal production in Indonesia from 2013 to 2022 (in million metric tons), Statista (2023)


ENERGY INDICATOR OF SOME COUNTRIES


	Indicator	Unit	Indc	pnesia	Malaysi a	Vietna	m	Japan	Asia (non OECD)	World	
	Population	mio	25	57.6	30.3	91.7		127.0	2,438	7,334	
	GDP	Miliar 2010 USD	98	37.5	330	154.5		5,986.1	5,948	75,489	
	TPES	Mtoe	22	25.4	96.5	73.8		429.8	1,769	13,790	
	Elelectric consumption	TWh	21	11.9	141.2	140.7	,	998.7	2,397	22,386	
	Emission CO2	Mt of CO2	44	1.9	220.4	158.3		1141.6	3,887	32,294	
	TPES/capita	toe/kapita	0	.87	2.83	0.73		3.38	0.73	1.86	
	TPES/GDP	toe/000 2010 USD	0	.23	0.26	0.46		0.10	0.3	0.18	
	Electric consumption/capita	KWh/kapita	9	910	4.656	1,534.3	37	7,865	983	3,052	
	CO2/TPES	tCO2/toe	1	.96	2.36	2.28		2.66	2.2	2.37	
	CO2/capita	tCO2/kapita	1	.72	7.27	1.83		8.99	1.59	4.4	
	Proven reserve indicatorOilCoal			Unit			Indonesia*		Wa	World**	
				Miliar barel			3.31		1	1,706.7	
				Miliar ton			16.97		1,	1,139.3	
	Gas Source: * ESDM (data 2016); ** BP Statistical Review of World Energy 2017 (data				2016) Trillion cubic feet			101.22		6,588.8	

Indonesia Plan to reduce CO_2 emission will be related to CCS/CCUS


- Indonesia is planning for progression towards net zero emission in 2060 based on the NDC document submitted in 2021
- Indonesia's power generation is highly reliant on coal & other fossil fuels, where almost 90% of energy supply is taken from fossil fuel.

CCS/CCUS as a potential technology to reduce co₂ emission in big scale

- CCUS in Indonesia has a potential to delve into potential CO₂ sources in Industrial & Power Generation sector.
- The Gov't of Indonesia is currently preparing regulations for carbon credit and its related instruments.

Environmental Sustainability

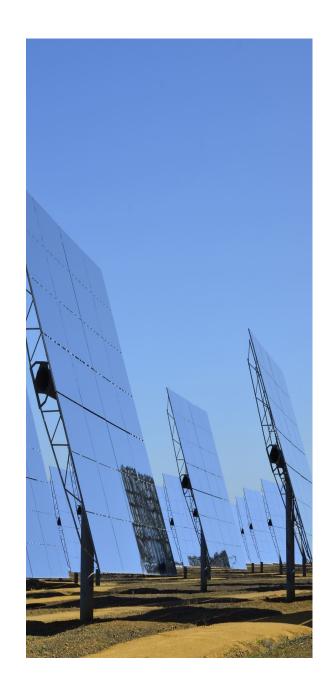
CO2 reduction? Use the NRE Power Generator or Environmentally Clean Energy (Fossil Energy with No Emission such as application of CCS/CCUS in Industrial activity)

Don't misunderstand

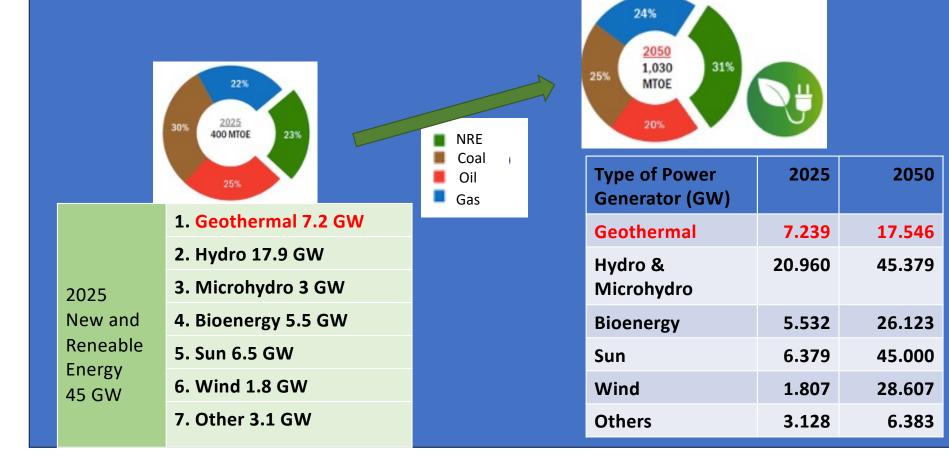
"The use of electric vehicles will be meaningful if the energy transition is successful"

Environmental Sustainability

Interactive Task: Lifecycle Carbon Assessment for Automobiles


Green credentials Average lifecycle for car in US midwest

For vehicles in US midwest	Tesla Model S P100D (battery-electric vehicle)	BMW 7 Series 750i xDrive (internal combustion engine)	Mitsubishi Mirage (internal combustion engine)	
	Production emissions (kg CO ₂ eq			
	12,204	8,190	4,752	
	Use emissions - 270,000km (kg	CO ₂ eq)		
	48,600	95,310	46,980	
	End of life emissions (excluding b	pattery, kg CO ₂ eq)		
	311	351	159	
	Lifecycle emissions total - 270,0			
	61,115	103,851	51,891	
	Lifecycle emissions per km - inte			
	226	385	192	
Envana	All data are based on vehicles driven in the US midwest Source: Trancik Lab, MIT \odot FT	15		HALLIBURTON

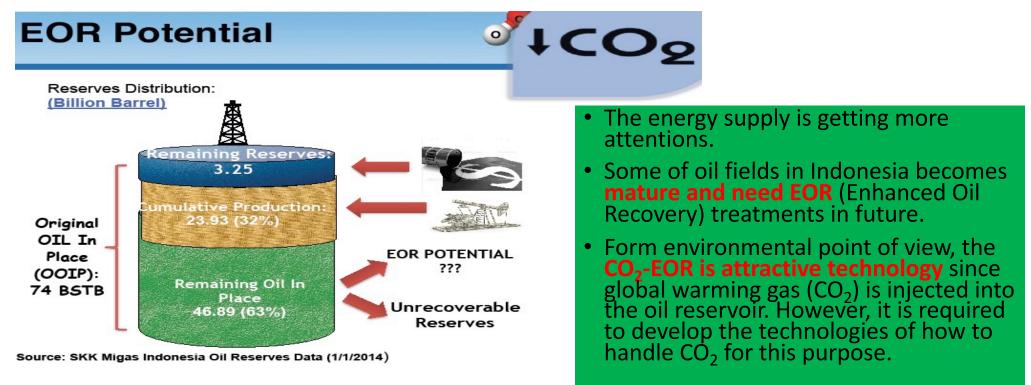

Indonesia applies five main principles Indonesia to reduce the carbon footprint and achieve net zero emissions (PPSDMA-ESDM, 2023):

- Increasing the use of new and renewable energy (EBT); √ (Bioenergy, Hydroenergy, Solar, Wind, Geothermal)
- Reduction of fossil energy;
- Use of electric vehicles in the transportation sector;
- Increasing electricity use in households and industry; and
- The use of Carbon Capture and Storage (CCS) & (CCUS) √

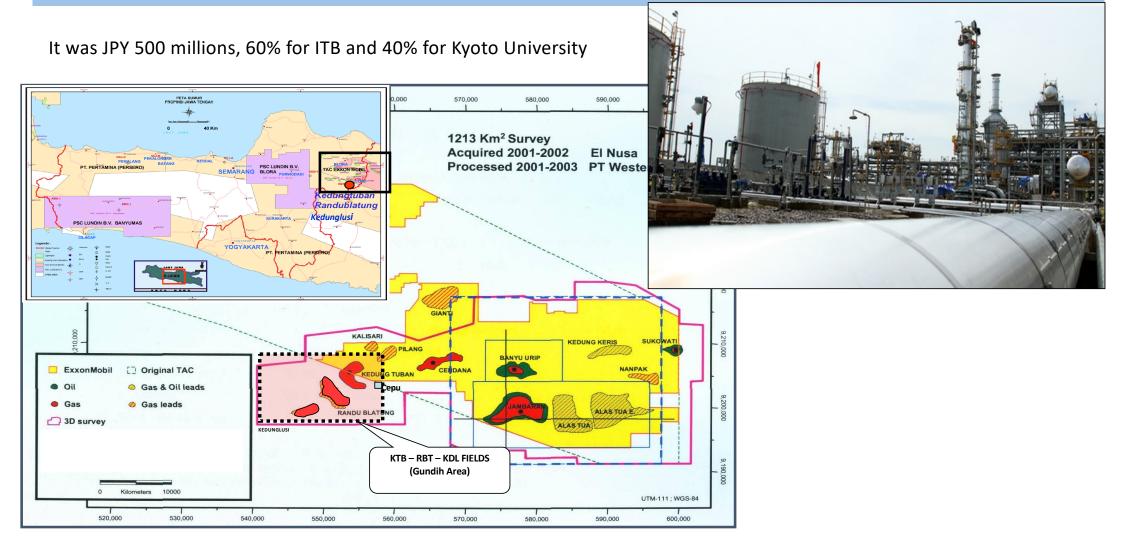
Note: \checkmark the geophysical technology has an important role.

Energy Mix Target 2025-2050

Source: KESDM



- CCS can be applied to reduce CO₂ emissions from various sources, including:
 - Electricity power generation
 - Cement industry
 - Iron & steel industry
 - Oil refinery
 - Petrochemicals, fertilizers
- The separated CO₂ is then transported using pipes or ships
- Then, CO₂ is injected into wells that have good and safe characteristics
- CO2 can be utilized (utilization), for example for enhanced oil recovery (EOR)CCS

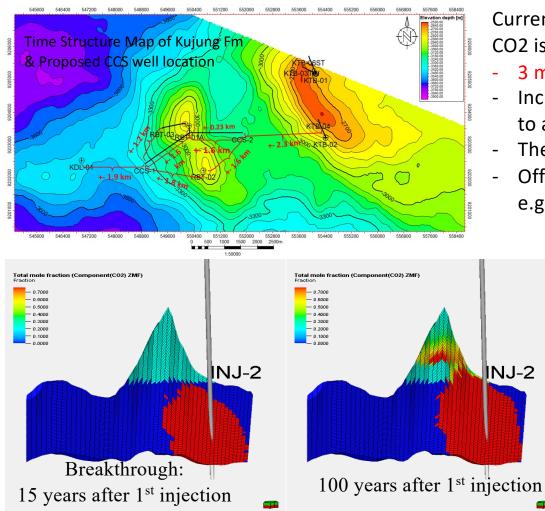

Source: CO2CRC

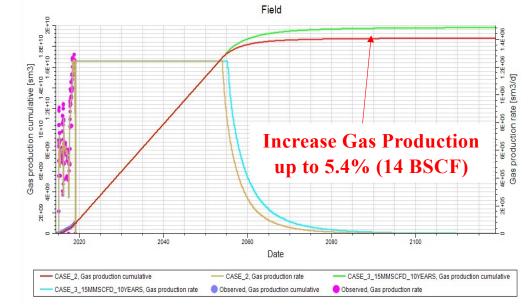
Why CCUS important in Indonesia?

- → CCS and CCUS implementations are not included in Indonesian NDC as the tool that could reduce the GHG emissions, because it was predicted that these technologies are too expensive.
- \rightarrow The concept of CO₂-injection implementation in the form of CO₂-EOR or CO₂-EGR are introduced by National CoE for CCS, CCUS since the end of 2019, when the preparation of the Gundih CCS project is revised to be the Gundih CCUS project

When ITB start with CCS/CCUS? ITB activities on CCS/CCUS was started in 2012, when ITB (and Kyoto University) won SATREPS project (2012 – 2017)

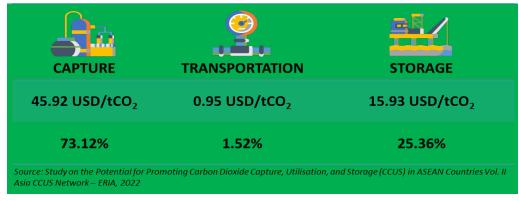
Research activities in the field

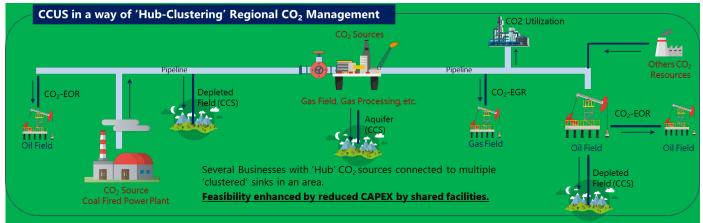



- 1. Provides guidance to the students before going to the field
- 2. Vibro being prepared before the action
- 3. Recording group in action (Labo)
- 4. DSS-12 recording system
- 5. GRS system
- 6. Geophone
- 7. DSS-12 warehouse

What we have learnt from the NEW Scenario (version 2021) of the Planned CCUS Project in GUNDIH AREA

Currently Gundih CPP releases 800 tpd of CO2. If all of available CO2 is injected to Kedungtuban structure:


- 3 mio of CO2 will be reduced for 10 years injection time.
- Incremental gas production of 14 BSCF for 10 years, equivalent to approx. USD 60 mio.
- The Opex and Capex for 10 years CO_2 injection = USD 120 mio.
- Offering participation of foreign institutions for injecting CO2,
 e.g. using ICM scheme



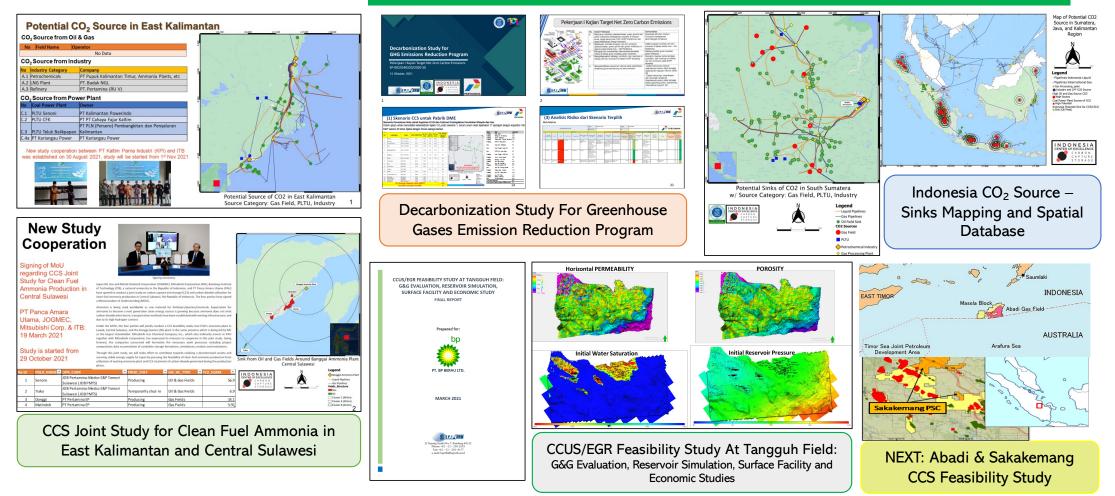
CHALLENGES and Solution (?)

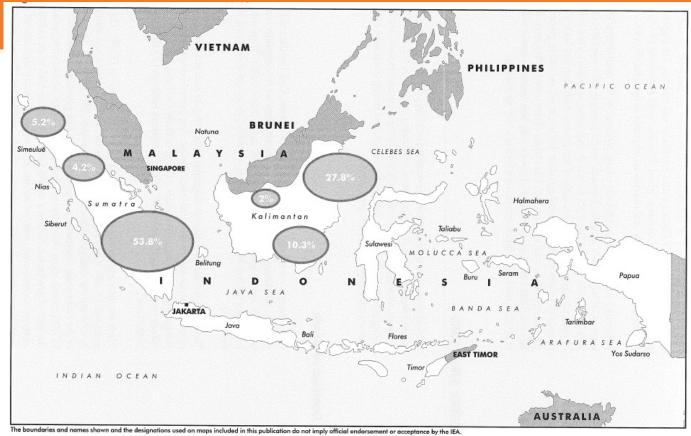
Cost of CCS/CCUS

> The highest cost of CCS/CCUS activities is for CO_2 Capture.

How to Lowering the Cost

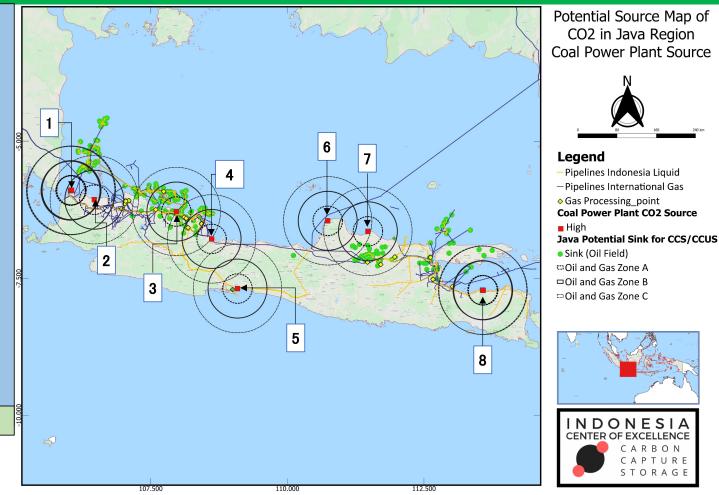
- Technology Development
- Partnership (Cost Sharing)
- CCS/CCUS Hubs
- Incentives
- etc.


CCS/CCUS Project Status in Indonesia


From those above lists, ITB's CoE participated in the 8 project

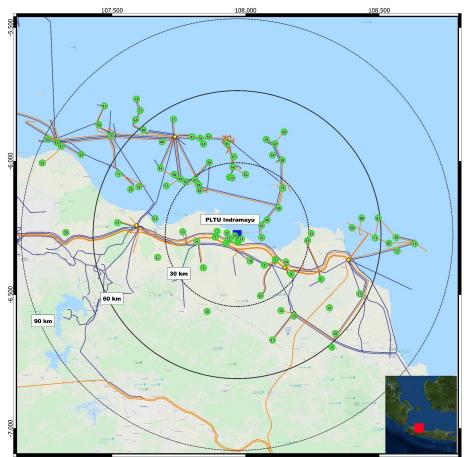
Current Studies/Projects conducted by ITB together with Industries and International Partners

Indonesia is a Coal Country


Note: Some disparity in totals may occur due to rounding. Source: Ministry of Energy and Mineral Resources.

Decarbonisation of GHG from coal-fired power plants is also our main concern.

Overview of Potential CO2 Source Map from Coal-fired Power Plants in Java Region


CO₂ Source (According map, subject of discussion)

- Coal Power Plant (8 Plants)
 - PLTU Suralaya & PLTU LBE (1)
 - PLTU Lontar (2)
 - PLTU Indramayu (3)
 - PLTU Cirebon (4)
 - PLTU Cilacap (5)
 - PLTU Tanjung Jati B (6)
 - PLTU Rembang (7)
 - PLTU Paiton (8)
- Power Plant (coal) CO₂ is classified as:
 - Low: <1000000 TCO₂e
 - Medium: 1-2 million TCO₂e
 - High: > 2 million TCO₂e

The study is currently conducted between ITB and PLN (Des 2022 – Apr 2023)

Examp	le of CO2-Hu	b in the vicinity of PL	TU Indramay	u (290 M)
No ID	FIELD_NAME	Operator 🗸 🗸	PROD_STAT	GN_HC_TYPE
1	Karang Enggal	PT Pertamina EP	Producing	Oil & Gas Fields
2	Jati Asri	PT Pertamina EP	Producing	Oil & Gas Fields
3	Jati Sinta	PT Pertamina EP	Producing	Oil & Gas Fields
4	Kandang Haur Timur	PT Pertamina EP	Producing	Oil & Gas Fields
6	Cemara Barat	PT Pertamina EP	Producing	Oil & Gas Fields
7	Pegaden	PT Pertamina EP	Producing	Oil & Gas Fields
8	Cemara Selatan	PT Pertamina EP	Producing	Oil & Gas Fields
10	Kandang Haur Barat	PT Pertamina EP	Temporarily shut-in	Oil & Gas Fields
13	Bojongraong	PT Pertamina EP	Producing	Oil & Gas Fields
20	Gantar	PT Pertamina EP	Producing	Oil & Gas Fields
21	Pamanukan Selatan	PT Pertamina EP	Producing	Oil & Gas Fields
22	Waled Utara	PT Pertamina EP	Producing	Oil & Gas Fields
24	Cemara Timur	PT Pertamina EP	Producing	Oil & Gas Fields
26	Melandong	PT Pertamina EP	Producing	Oil & Gas Fields
28	Karang Baru	PT Pertamina EP	Producing	Oil & Gas Fields
29	Tegal Taman	PT Pertamina EP	Producing	Oil Fields
31	Karang Baru Barat	PT Pertamina EP	Temporarily shut-in	Oil & Gas Fields
32	Karang Tunggal	PT Pertamina EP	Temporarily shut-in	Oil & Gas Fields
34	Jati Keling	PT Pertamina EP	Producing	Oil & Gas Fields
40	Arjuna FS	PT Pertamina Hulu Energi ONWJ Ltd	Temporarily shut-in	Oil & Gas Fields
42	Arjuna U	PT Pertamina Hulu Energi ONWJ Ltd	Producing	Oil & Gas Fields
45	Arjuna FF	PT Pertamina Hulu Energi ONWJ Ltd	Temporarily shut-in	Oil & Gas Fields
47	Arjuna FZ	PT Pertamina Hulu Energi ONWJ Ltd	Producing	Oil & Gas Fields
54	Arjuna ESR	PT Pertamina Hulu Energi ONWJ Ltd	Producing	Oil & Gas Fields
55	Arjuna ESS	PT Pertamina Hulu Energi ONWJ Ltd	Producing	Oil & Gas Fields
56	Arjuna FSW	PT Pertamina Hulu Energi ONWJ Ltd	Producing	Oil & Gas Fields
66	Arjuna ES	PT Pertamina Hulu Energi ONWJ Ltd	Producing	Oil & Gas Fields
75	Arjuna EST	PT Pertamina Hulu Energi ONWJ Ltd	Temporarily shut-in	Oil & Gas Fields
79	Arjuna F	PT Pertamina Hulu Energi ONWJ Ltd	Producing	Oil & Gas Fields
85	Arjuna UB	PT Pertamina Hulu Energi ONWJ Ltd	Producing	Oil & Gas Fields
86	Arjuna UY	PT Pertamina Hulu Energi ONWJ Ltd	Producing	Oil & Gas Fields

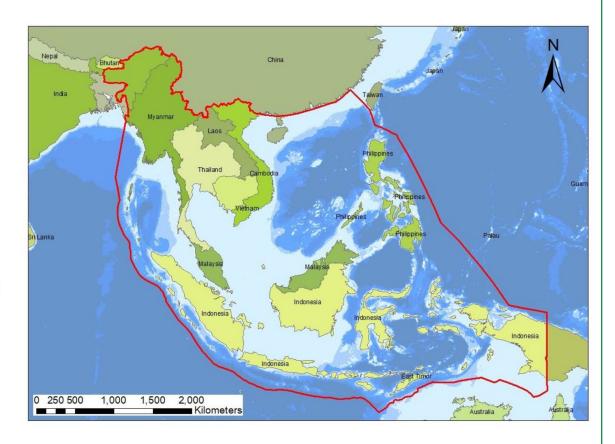
Sink from Oil Fields Around PLTU Indramayu West Java

- Legend Coal Power Plant
- Gas Processing_point
- Liquid Pipelines
- ---- Gas Pipelines
- Sink (Oil Field)
- Cluster A (30 km)
- Cluster B (60 km)
- Cluster C (90 km)

The study is currently conducted between ITB and PLN (Des 2022 – Apr 2023)

Installed electricity generation capacity for low emissions sources in Indonesia in the Announced Pledges Scenario, 2021-2060 (IEA, 2023)

Regional Study of CO2 Storage Capacity in Saline Aquifer in Southeast Asia (March 2023)

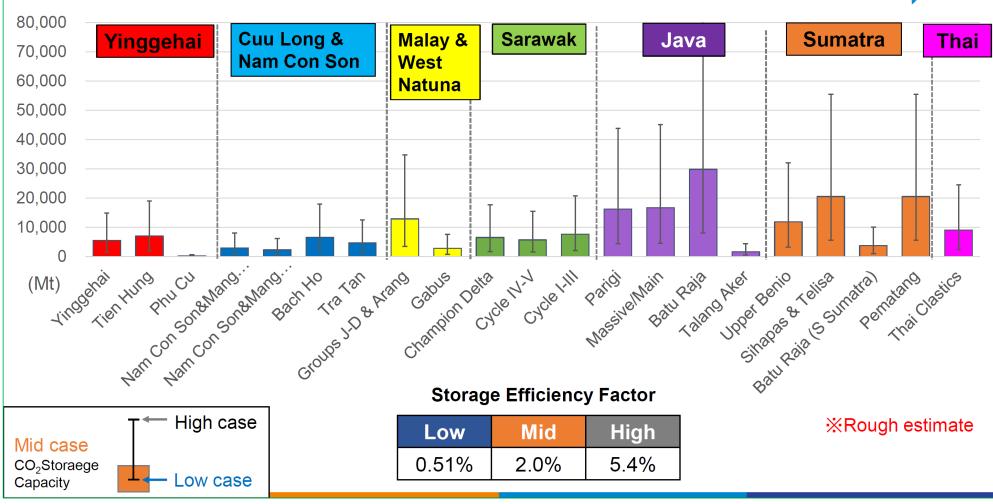

JOGMEC Proprietary

Overview

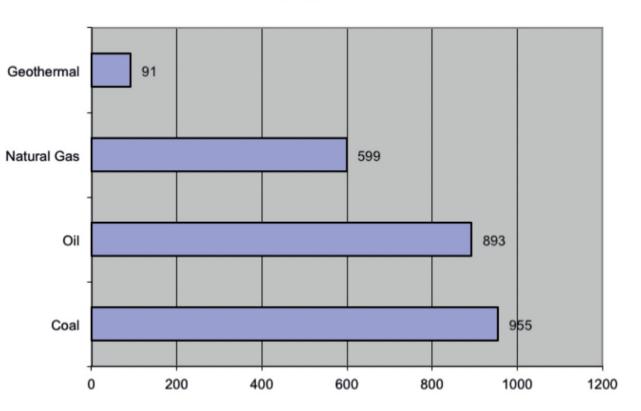
- Study Area : Southeast Asia
- CCS Target : Saline Aquifer
- Database : Neftex® Predictions
- Study Term : October 2021~
 March 2022
- Study Objective:

Screening of Suitable Areas for CCS Using Neftex® Predictions

JOGMEC HALLIBURTON

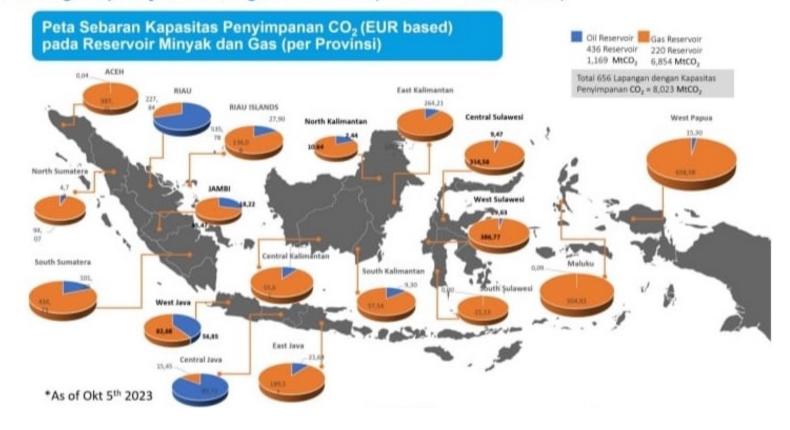

IOGMEC 3

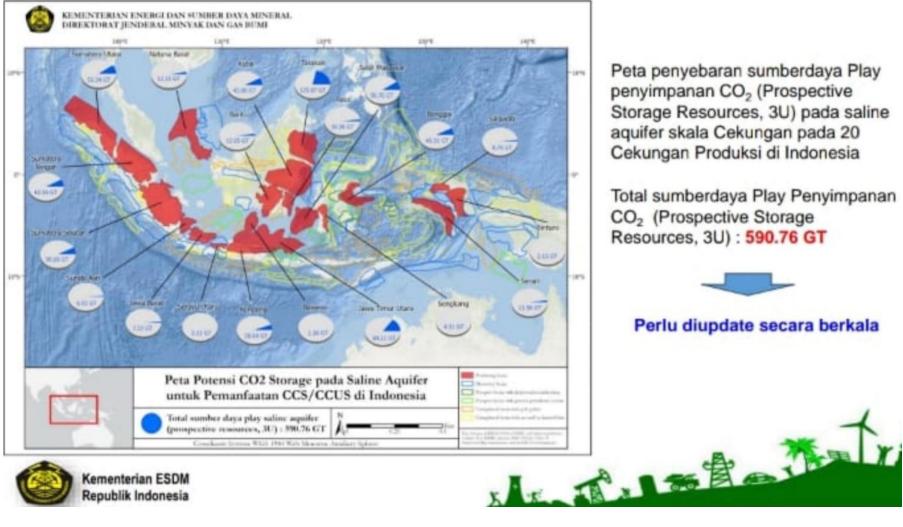
Estimation Result


JOGMEC Proprietary

JOGMEC Phase 2 Results : Comparison of CO2 storage in each formation

26


Comparison of CO_2 emissions from electricity generation in the USA (Bloomfield, et al., 2003)


g CO₂/kWh

Storage capacity of oil and gas reservoir in Indonesia (Lemigas, 2023)

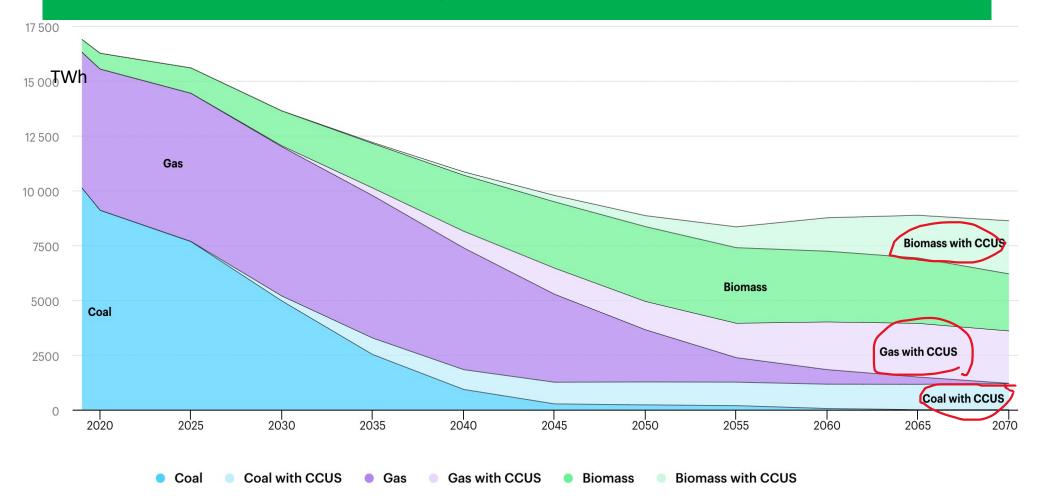
→ LEMIGAS's storage capacity in oil and gas reservoirs (version October 2023)

Prospective Storage Resources in Saline Aquifer in Indonesia(KESDM, 2023)

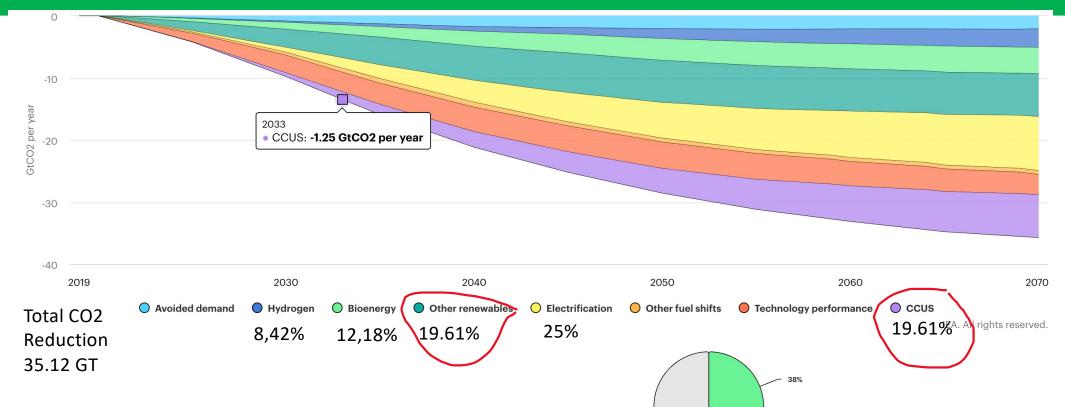
Peta penyebaran sumberdaya Play penyimpanan CO₂ (Prospective Storage Resources, 3U) pada saline aguifer skala Cekungan pada 20 Cekungan Produksi di Indonesia

Total sumberdaya Play Penyimpanan CO₂ (Prospective Storage Resources, 3U) : 590.76 GT

Perlu diupdate secara berkala

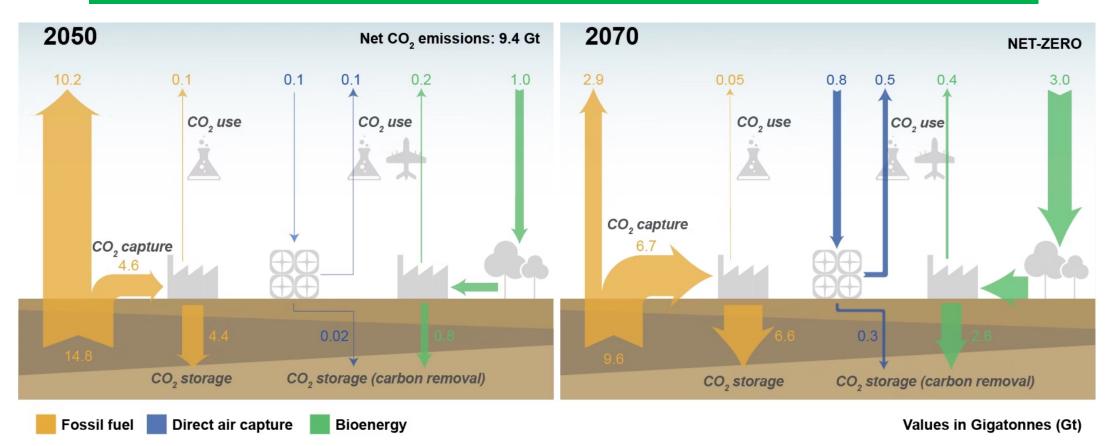

Kementerian ESDM Republik Indonesia

CO₂ Sources from Main Energy Sector in Indonesia


Indonesia target for GHG emission reduction from energy sector from 2010 - 2030 (20 years): ~ 314 - 398 Mt of CO ₂						
Gundih Field	3 Mt of Cumulative Total CO_2 that could be injected in 10 years	Potential of GHG reduction from these planned projects (10 years): <u>~ 137 Mt of CO₂</u> This is equal to				
Tangguh Field	25 Mt of Cumulative Total CO_2 that could be injected in 10 years					
Eastern Java	$\begin{array}{c c} 35 \text{ Mt of Cumulative CO}_2 \text{ that could be produced from main oil and gas} \\ \text{fields} & \text{in Eastern Java for 10 years} \end{array}$					
Banggai Ammonia Plant & East Kalimantan Ammonia Plant	30 Mt of Cumulative CO_2 that potentially to be injected for 10 years	34 - 44% of GHG emission reduction target from energy				
DME Project Tanjung Enim	40 Mt of almost pure CO ₂ that potentially produced from coal gasification for 10 years and another 25 Mt of CO ₂ from boiler incl. impurities	sector (2010 - 2030)				
Potential CO ₂ from the fired Power Plants		<i>I</i> , 80%				
CCS/CCUS can play	an important role in Indonesia, since there are a lot of $\rm CO_2$ sources	from energy				

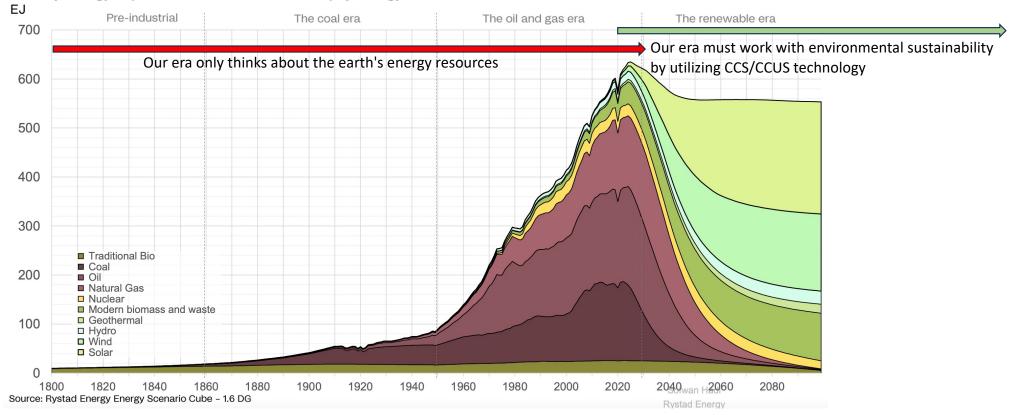
sector and their locations are close enough to depleted oil reservoirs and coal mining


World electricity generation from plants equipped with carbon capture by fuel in the Sustainable Development Scenario, 2019-2070 (IEA, 2023)


CCUS Role to CO₂ emissions reductions in the energy sector in the Sustainable Development Scenario relative to the Stated Policies Scenario (IEA, 2023)

CO₂ Emission Capture & Removal in SDG Secenario 2020-2030 (IEA,2023)

CO₂ Emission Capture & Removal in SDG Secenario 2050-2070 (IEA,2023)



Closing

Four eras of energy in modern time – all triggered by technological shift (modify from Rystad, 2023)

Primary energy capacities in the 1.6 DG scenario, by energy source

Thank you